
Lecture 3
Conditions and branches

Arithmetic and logic
Computing platforms

Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018

Arithmetic instructions

Instruction Synopsis Formula Flags Affected
add rn,rm add rn to rm rm := rn + rm C,V by operation; Z,N by result
addc rn,rm add with carry rn to rm rm :=rn + rm + C "
sub rn,rm subtract rm from rn, copy to rm rm := rn � rm "
cmp rn,rm as above, except rm left unchanged rn � rm "
neg rn 2’s comp change of sign rn := �rn "
inc rn add 1 to rn rn := rn+1 "
dec rn subtract 1 from rn rn := rn�1 "
clr rn clear rn rn := 0 C=1,V=0,Z=1,N=0
tst rn test rn rn := rn C=0,V=0; Z,N by result

Figure 5.1: Arithmetic operations

may then be used to choose which of two execution paths the program will follow, depending on the values
of the flags. Control instructions are discussed in section 5.8 .

It is important to remember that the flags are changed by ALU operations, whether or not they are going
to be used for control. The operation cmp is available for those situations when no other useful work is to
be done apart from flag setting.

A single-operand version of cmp is available as well: the tst (test) operation. This operation simply examines
its operand register to find out whether it contains zero, a negative or a positive number, and sets the flags
accordingly.

Aside: It might be a little confusing to see the flags Z and N changed by cmp to indicate “the operands are
equal/not equal or less/not less”, respectively when it is used to compare two registers. However, you will
probably be pleased to learn that the flags themselves are rarely referred to by name; there is a large and
redundant set of “conditions” such as greater-than and plus, which are made available to the Platform 31/2
programmer, and which we will encounter later on.

Example program:

Exercising the ALU
asect 0x00
ldi r0, data
ld r0, r0 # r0=10

ldi r1, data+1
ld r1, r1 # r1=-3

ldi r2, data+2
ld r2, r2 # r2=-128

add r0, r1 # r1=10-3=7; C=1, V=0, Z=0, N=0
sub r0, r1 # r1=10-7=3; C=1, V=0, Z=0, N=0
addc r0, r1 # r1=14; C=0, V=0, Z=0, N=0
clr r3 # r3=0; C=1, V=0, Z=1, N=0
dec r3 # r3=-1; C=0, V=0, Z=0, N=1
add r2, r3 # r3=127; C=1, V=1, Z=0, N=0
cmp r0, r2 # no change; C=0, V=1, Z=0, N=1
tst r2 # no change; C=0, V=0, Z=0, N=1
neg r2 # no change; C=0, V=1, Z=0, N=1
inc r2 # r2=-127; C=0, V=0, Z=0, N=1
halt

asect 0x20
data: dc 10,-3,-128

end

109

Logic instructions

Instruction Synopsis Formula
and rn,rm Load rm with the bit-wise and of rn, rm rm := rn ^ rm
or rn,rm Load rm with the bit-wise or of rn, rm rm := rn _ rm
xor rn,rm Load rm with the bit-wise xor of rn, rm rm := rn � rm
not rn Load rn with the bit-wise not of rn rn := rn0

Figure 5.2: Logic operations

5.7.2 Logic operations

The logic operations are summarised in figure 5.2. They are straightforward bitwise applications of Boolean
logic connectives to the corresponding bits of the operands. The flags V and C are cleared by all logic
operations, since no arithmetic of any kind is performed, and the other two flags, N and Z are, in all four
cases, determined based on the result interpreted as a signed number. Of course the operations themselves
do not make much sense if the operands are interpreted as numbers, but the flags N and Z are still meaningful
and useful even for the result interpreted as a bit string: N indicates the content of bit 7 and Z whether or
not all bits of the results are zero.

The operations and, or and xor each take two registers as operands. In each case the logical connective is
applied to corresponding bits in the two registers. For example, for and r0,r2, bit 3 of the result is the
conjunction (logical “and”) of bit 3 of r0 and bit 3 of r2. The operation not applies logical negation to each
bit of its single operand, replacing 1s with 0s and 0s with 1s.

Interestingly, the purpose of logic operations is not at all to support automated reasoning or deduction! Far
from it, logic operations are merely a way of achieving selective manipulation of bits in a bit-string.

We may use a logic operation to change any particular bit(s) in an 8-bit string to 1, to change selected bits
to 0, to flip selected bits (make them 0 if they are 1 and make them 1 if they are 0) or to flip all bits in a
string. These actions are achieved by the operations or, and, xor and not, respectively.

To set bits x, y and z of register rm to 1, we create a bit-string which has bits x, y and z as 1’s, and the
rest as 0’s, load it into register rn and then or it into rm. A bit-string (or number) specially created for the
purposes of manipulating bits of another bit-string is commonly referred to as a mask. Here is an example:

setting bits b0 and b3 to 1
run code
asect 0x20

data: dc 0x35 # some number to try

code: ldi r0, data
ld r0, r0 # r0 = 0x35 = 0b00110101

load the mask into r1
ldi r1, 0b00001001 # bits b0 and b3 of r1 are set, the rest are cleared

set selected bits of r0, as specified by the mask
or r1, r0 # sets b0 and b3 in r0 to 1

after which r0 contains 0b00111101 = 0x3d
halt
end

If we wished to clear specific bits in an 8-bit string, we would use the operation and with which we would
require a mask that marked the bits to be cleared with 0’s and the bits to be left unchanged with 1’s. It is
opposite to the kind of mask that we used with the or above.

Here is the same example, but now the bits are cleared rather than set:

110

Shift and move instructions

Instruction Synopsis Formula Flags Affected
shra rn arithmetic shift right rn rn := rn/2 C=(rn bit 0) before op

V=0; N,Z by result
shla rn arithmetic shift left rn rn := rn+rn same as add
shr rn sliced shift right rn rn := rn/2 C=(rn bit 0) before op

rn bit 7:=(C before op) V=0; Z,N by result
shl rn sliced shift left rn rn := rn+rn+(C before op) same as addc
rol rn rotate left rn rn := rn+rn+(rn bit 7) V=0; the rest same as addc
move rn,rm move rn to rm rm := rn V=C=0; Z,N by result

Figure 5.3: Data movement operations

5.7.3 Data movement operations

Those operations are displayed in figure 5.3. The first five operations are various shifts and the last one
copies data from one register to another. The term “movement” reflects the facts that the effect of a shift
operation is as if the bit-string had moved inside the register, with end bits falling out or slotting in. In
fact what moves is the pattern of bits in the bit-string, not the bit-string itself, since it is not physical and
is unable to change its location inside the machine.

Shift operations cause the bit-string in a register to ‘shift’ one position to the left or right. Thus, a shift
right causes the contents of bit-5 to ‘move down’ to occupy bit-4, the contents of bit-4 to ‘move down’ to
occupy bit-3,etc. These operations differ in the direction of the shift, in what happens to the bits at either
end of the bit-string held in the register (b0 and b7), and in the effect they have on the flags in the PS
register.

A reminder about bit numbering. By convention, the bits in an n-bit string are numbered as follows:

• Individual bits are numbered from 0 to n� 1. In CdM-8 they are numbered from 0 to 7.

• Bits are numbered from right to left, so

– Bit 0 is the right-most bit in the string
– Bit n� 1 is the left-most bit in the string

• Bit 0 (or b0) is the least significant bit.

• Bit n� 1 (b7 in the case of CdM-8) is the most significant bit.

• In a signed number, the left-most bit (n� 1) is used as the sign bit.

It is important to remember these conventions when looking at shift operations.

Arithmetic shift right. The operation shra treats its operand as a signed number:

b0

b0

b1

b1

b2

b2

b3

b3

b4

b4

b5

b5

b6

b6

b7

b7 C

before

after

The effect of the arithmetic shift right is identical to dividing by 2 with the remainder shifted into C. For
example, the number 0b10101010 represents the quantity �86 in 8-bit 2’s compliment. After the arithmetic
shift right the value will become 0b11010101, which is the expected original quantity halved: �43. The
carry flag C will be 0. If, otherwise, we started off with the value 0b00000101 , or the quantity 5, then after
the shift it would become 0b00000010 or 2 with the C flag set to 1.

113

Where shift operations are used?

• Multiplication/division by powers of 2
• [Parts of algorithms for] multiplication/division by arbitrary number
• We will discuss this later today

• Bit arrays and sets
• We will discuss this next week

• Data structures with fields not aligned to byte boundary
• Say, we need to encode two numbers, one 0..1023, second 16..47
• UTF-8 and many compressed data formats

• Communication protocols (transmit data one bit a time)

CdM-8 flag semantics

• N – sign bit of the result. Used for signed comparison
• C – carry bit of the result. Used for unsigned comparison
• Z – result is zero. Used for signed, unsigned and bitwise comparison
• V – signed overflow (sign loss). Can be used to catch errors
• V is also needed for correct signed comparison

C and unsigned subtraction/comparison again

• Subtraction ó adding 2’complement
• When the result < 0, C is 0
• 1-255 = 1+0000 0001 = 2
• When the result > 0, C is 1
• 3-2 = 11+1111 1110 = 1+C

Full list of CdM-8 branch instructions

More about branches

• In typical assembler, branch is like goto statement.
• You must invent label names and jump to labels
• Typical equivalent of
if (condition) { then-block } else {else-block)
requires one comparison, two labels, one branch and one jump
• (unconditional branch)
Condition calc
b[!cond] $1

Then-block
Br $2
$1: Else-block
$2: …

CdM-8 assembler has richer syntax

If
Calc condition

is cond
Then-block

Else
Else-block

Fi

Real example

if
tst r0

is z
ldi r1, 10
add r1, r0

else
shla r0

fi
• Consult tome.pdf for syntax for complex conditions
• (it is not so elegant)

Loops

r2=r0*r1 (assuming r1 is non-negative)
clr r2

while
tst r1

stays gt
add r0, r2
dec r1

wend

Post-condition loop

find a zero
ldi r0, array-1

Initialise r0 to point to the cell before the first element of the array.
do

inc r0 # point r0 to the next element
ld r0, r1 # read the element into r1
tst r1 # examine it

until z # if r1 is 0 then exit, otherwise continue

Nesting of if’s and loops is possible

• You can use them like blocks in high-level languages
• You do not need to invent label names
• You do not need to worry about correct nesting
• Much harder to write spaghetti code (than with raw branches)
• This is why CdM-8 assembly is called Platform 3 ½
• Actually, it is much simplier to implement than you probably think
• It is all described in tome.pdf
• Beware: in some exercises using structural statements is explicitly

prohibited

